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 The spectrometric method is one of the most popular methods for activity 
measuring in environmental samples. It provides application of semi-conductor and 
scintillation spectrometers. Despite high measurement accuracy, high price and some 
difficulties in operation make semi-conductor detectors difficult to apply. Scintillation 
spectrometers, which are cheaper, are applied to determine activity of natural 
radionuclides. But continuous spectrum image on the monitor permits the spectrometers 
to measure not so many radionuclides and, thus, it restricts application of the 
scintillation spectrometers.  

 One of the ways to solve the problem is to use sophisticated mathematical 
analysis of decomposition of scintillation spectra. Examination of different spectrum 
analyses and devices, produced by means of these methods, reveals that sometimes the 
above solution is quite improper and has weak solution stability. Besides, some 
problems appear while applying these methods in field devices, which are to carry out 
scale analysis without a computer. As a result, simplified methods are applied, which 
reduce accuracy of activity determination.  

 The current article describes the method of decomposition of scintillation spectra 
into spectrum components by means of artificial neural networks. The aim of the above 
method is to determine activity of radionuclides in the source under measurement 
according to its radiation spectrum. The spectrum is acquired by means of scintillation 
spectrometer. If applying a laboratory spectrometer, which, as a rule, is equipped with a 
computer, the spectrum is transferred from the ADC to the PC, which operates with the 
above method. If applying field spectrometers, spectrum is to be processed by either a 
smart sensor or operating control unit. Activity calculation algorithm is equal in both 
cases. 
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 Introduction 
 

Nowadays industry often has bad unwholesome influence on the environment and a 
human being. That is why environmental friendliness is one of the quality factors of 
production. It causes constant development of special equipment and methods for 
environmental monitoring. Radioactivity stands out from other quality factors to be 
controlled. High radiation contamination risks, on the one hand, and strict safety 
regulations, on the other hand, draw special attention to metrological parameters of 
modern equipment of radiation monitoring. 

The spectrometric method is one of the most popular methods for activity 
measuring in environmental samples. It provides application of semi-conductor and 
scintillation spectrometers. Despite high measurement accuracy, high price and some 
difficulties in operation make semi-conductor detectors difficult to apply. Scintillation 
spectrometers, which are cheaper, are applied to determine activity of natural 
radionuclides. But continuous spectrum image on the monitor permits the spectrometers 
to measure not so many radionuclides and, thus, it restricts application of the 
scintillation spectrometers. 

One of the ways to solve the problem is to use sophisticated mathematical analysis 
of decomposition of scintillation spectra. Examination of different spectrum analyses 
and devices, produced by means of these methods, reveals that sometimes the above 
solution is quite improper and has weak solution stability. Besides, some problems 
appear while applying these methods in field devices, which are to carry out scale 
analysis without a computer. As a result, simplified methods are applied, which reduce 
accuracy of activity determination.  

The current article describes the method of decomposition of scintillation spectra 
into spectrum components by means of artificial neural networks. The aim of the above 
method is to determine activity of radionuclides in the source under measurement 
according to its radiation spectrum. The spectrum is acquired by means of scintillation 
spectrometer. If applying a laboratory spectrometer, which, as a rule, is equipped with a 
computer, the spectrum is transferred from the ADC to the PC, which operates with the 
above method. If applying field spectrometers, spectrum is to be processed by either a 
smart sensor or operating control unit. Activity calculation algorithm is equal in both 
cases. 

Activity calculation of radionuclides 
 

Since the spectrometric method under discussion is relative, calibration of the 
equipment is required. According to the neural network theory such calibration is called 
learning. 

The step-by-step algorithm of activity calculation follows. Learning (calibration) is 
described in part 3 of the current article. 

First of all, we describe input data. We have a spectrum of a working source N 
collected by means of a spectrometer. The source (sample) is measured in the preset 
geometry with the certain density ρи and life time. We have also a background spectrum 
Nф measured under the same conditions. Background is usually measured by means of a 
spectrometer either with an empty shielding chamber or with an empty sample dish in 
the chamber.   
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Pic.1. Diagram of activity measurement in samples by means the neural network 

method 
 
To reduce the spectrum to the energy scale, we should know energy calibration. 

Modern spectrometers provide the relation between a spectrum channel No. and energy, 
which are linearly dependent as follows: 

ikEEi ⋅+= 0    (1), 
where Ei – energy corresponding to the i-channel, keV; E0, k – coefficients of 

energy calibration fixed during the device setting. 
Data gained in the course of learning (calibration) is weights of neural network W, 

scales of each network input Min and output Mout and energy windows where summing 
up RE is carried out. 

During calibration network parameters should be set up, including the number of 
layers and neurons in each layer and a type of activation function with parameters. The 
number of network inputs depends on the number of selected windows, plus one input 
for density. The number of network outputs corresponds to the number of radionuclides 
under detection. 

 
First of all, we prepare input data for network calculation.  
In the spectrum channels we define corresponding windows for each specified 

energy window. According to Eq.1:  

k
ER

R ELj
Lj

0−
=    ,  j=1..n   (2) 

where RLj – channel No. in the spectrum of the left edge of the j-window; RELj – 
energy of the left edge of the j-window, keV; n – number of windows. 

The similar equation is used for the right edge: 

k
ER

R ERj
Rj

0−
=    ,  j=1..n   (3) 

where RRj – channel No. in the spectrum of the right edge of a j-window; RERj – 
energy of the right edge of a j-window, keV. 

We define total counting rate in the specified windows for the source working 
spectrum and background spectrum: 
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where Sj and Sфj – counting rates in the j-window of working and background 
spectra correspondingly, imp/sec; t и tф – real measurement time of working and 
background spectra correspondingly, sec. [1, 4]. 

Now we define input values of the neural network as follows: 
 

jin

jфj
j M

SS
X

−
=  ,  j=1..n   (6) 

where Xj – value of the j-output of the neural network; Min j – scale value for the j-
output. Eq. 6 reveals that the value Xj can vary from 0 to 1, which is caused by 
principles and architecture of neural network. 

The number of network inputs m=n+1, with another special input for density, is 
defined as follows: 

min

и
m M
X ρ

=    (7) 

where ρи – density of the sample under measurement, g/cm3; Min m - scale for 
density input, g/cm3. 

Input data is gathered now and should be put in calculation of the neural network. 
Network calculation means definition of states and outputs of neurons within inner 
layers and the last output layer [2]. These are outputs of the last layer, which are desired 
unscaled activities of radionuclides. One should remember that the number of outputs is 
not fixed and defined according to research tasks. It means that if activity of a certain 
radionuclide is to be determined in the sample with a radionuclide mixture, the network 
can have one output corresponding to a specified radionuclide. In this case network 
learning is carried out by means of spectra of unmeasured radionuclides.  

Network calculation is made in a layer-by-layer manner. Calculation of neuron 
states for the first layer is not necessary, since their outputs, or network inputs, are 
known. Thus, neuron states for the second layer are calculated as follows:   

∑
=

⋅=
1

1
,,1

P

i
jii

II
j WXC ,   j=1..P2  (8) 

 
where P1 -  number of neurons in the first layer, similar to the number of network 

outputs; P2 – number of neurons in the second layer; W1,i,j – weight between the i-
neuron of the first layer and j-neuron of the second layer, the index l depicts a layer, 
which has a link output (the first layer for Eq. 8). 

Neuron output is regarded as the function of its state: 

)( II
j

II
j Сfy =  , j=1..P2  (9) 
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where  - output of the j-neuron in the second layer; f – activation function, 
defined as: 

II
jy

)exp(1
1)(

c
cf

⋅−+
=

α     (10) 

where с – argument of the function or, in this case, neuron state; α – coefficient, 
which determines the slope of the function graph (Pic.2). The coefficient α is 
determined in the course of calibration and can vary from 0.5 to 3. 

 
Pic. 2. Sigmoid activation function [3]. 

 
Despite vast variety of activation functions, the research revealed that the above 

type of the activation function provides particularly successful and accurate calculation. 
Neuron states for the third layer are calculated as follows: 
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As shown by Eq. 11, the network inputs are replaced by the outputs of the second 
layer. Thus, we have got the following equation, similar to Eq. 9:  

)( III
j

III
j Сfy =  , j=1..P3  (12) 

where  - output of the j-neuron in the third layer. III
jy

The network for the rest of layers, including the output layer [2, 3], is calculated on 
the same principle as illustrated above. In this case, the output layer is described as 
follows: 
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)( Z
j

Z
j Сfy = , j=1..PZ   (14) 

where  - output of the j-neuron in the last layer; Z – number of layers in the 
network. 

Z
jy

To turn directly to calculation of radionuclides activities, output scales determined 
during the calibration should be used. 
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where Aj – activity of the j-neuron in order, Bq; - scale for j-output of the 
network; kкр –boundary coefficient, which enables not to use the non-linear range of a 
sigmoid function and is defined as 0.1; kум – coefficient introduced to correct a scale 
disturbed by the boundary coefficient. More detailed description of the above 
coefficients follows. 

joutM

 

Calibration (learning). 
 
To train the neural network, calibration spectra are required, which should be 

spectra of separate radionuclides measured in calibration samples with different 
densities (Pic.3). 

 

Σ
 

Pic. 3. Example of choosing calibration spectra for learning. 
 

These available calibration spectra should be included into the learning sample, 
where each component is a spectrum with different radionuclide content and density. 
To get such spectra, the additivity concept of simple spectra of radionuclides is to be 
applied. Thus, the equation for a sample spectrum with activities Aj, where j=1..n (n – 
number of nuclides in a source) will be the following: 

∑
=

⋅+=
n

j
jijiфi AqQQ

1
,   i=1..v   (16) 
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where Qi – counting rate in the i-channel of the mixed spectrum of the sample, 
imp/sec; Qф i – counting rate in the i-channel of the background spectrum, imp/sec; qij – 
counting rate in the i-channel for the simple spectrum of the corresponding j-
radionuclide, imp; v- number of channels in a spectrum. Eq. 16 can be applied provided 
that energy calibration of both simple spectra and the background spectrum is similar. If 
the above condition is not met, the value of energy calibration is to be made equal for 
all the spectra by means of Eq. 1. Besides, one should take into account that simple 
spectra q are collected for samples with one and the same density. 

Simple spectra q are calculated as follows: 

j

ф

iфi

ij A
t
N

t
N

q
−

=  ,   i=1..v, j=1..n   (17) 

where Ni– counting in the i-channel in the real j-radionuclide spectrum, imp; Nфi– 
counting in the i-channel in the background spectrum, imp; Aj – sample activity of the 
j-radionuclide, Bq; t and tф – life time for measuring source spectra and background 
spectra correspondingly, sec [4]. 

As shown by Eq. 15, while changing the value Aj we can acquire the required 
spectrum Q for a non-existent sample with the density similar to that one, for which 
simple spectra q were collected. Thus, Eq. 15 can be put down as follows: 
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k
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1
,   i=1..v ,  k=1..r   (18) 

where r – number of densities; k – density No. in order.  
Thus,  Eq. 17 is the main one for making both learning and testing samples. The 

variable k, i.e. density, and variables Aj are subject to variation, or the so-called 
randomization. And this is the acquired spectrum Q, which is the learning element. 
There can be as many similar elements as possible. It means that the more information 
the neural network learns, the more accurate and precise results are achieved. 

Now we describe the learning algorithm in details. We have simulated spectra of 
radionuclide mixtures Q and the activity vector Aв corresponding to each of the spectra. 
Thus, according to the algorithm described in part 2 of the current article, initialization 
of the matrix weights W should be carried out by means random variables from 1 to 0.3 
[2]. Then, we put different spectra from the learning sample Q in random order to the 
network input, calculate forward the network by means of Eqs. 1 – 15 and, as a result, 
get the simulated vector of radionuclide activity Aм. In this case we have already got 
activity vector Ав from the learning sample for the spectrum Q. 

 The matrix weights are corrected in the opposite way to the network distribution. 
Thus, an auxiliary j-variable can be illustrated as follows: 

)()1( jВ
Z
j

Z
j

Z
j

Z
j yyyyg −⋅−⋅=    ,  j=1..PZ  (19) 

where  - j-neuron output of the last layer; Z – number of network layers; - 
target value of the j-output, calculated according to the following:  

Z
jy jВy

jout

jВ
jВ M

A
y =  ,  j=1..PZ  (20) 
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where - scale for j-output of the network. joutM
Now we calculate the coefficient of weight correction: 

1
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1
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−
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Z
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Z
j

T
jiZ WygW μη ,     i=1..PZ-1 , j=1..PZ 

   (21) 
where T- number of learning iteration, if T=1 (i.e. at the beginning of learning) 

variables  are equal to 0; η – parameter, which determines learning rate, can 
vary from 0 to 1; μ – learning coefficient (Part 2) can vary from 0 to 1. The minus sign 
“-“ in front of the first component of Eq.21 is caused by the fact that the weight changes 
in the opposite way to that one indicated by the derivative of error surface. 

1
,,1

−
−Δ T

jiZW

Weight correction is carried out according to the following equation:  
     

T
jiZ

T
jiZ

T
jiZ WWW ,,1

1
,,1,,1 −

−
−− Δ+=   ,    i=1..PZ-1 ,j=1..PZ     (22) 

The above weight correction (Eqs. 19 – 22) is carried out in the opposite way to the 
network distribution for each pair of layers. This approach is called “backward error 
distribution”. 

For the next pair of inner (hidden) layers (not for the last and next to last ones) 
weights change in the following way: 
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where  
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Eq. 23 differs from Eq. 19 on the error of a hidden layer , which does not 
correspond directly to target output values. That is why weight correction of the hidden 
layer is proportional to its “contribution” to the error of the next layer. 

jδ

Then, weight correction is carried out in a similar way to Eqs. 21 and 22: 
 

1
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Z
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T
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(25) 
 

T
jiZ

T
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T
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1
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−
−− Δ+=   ,    i=1..PZ-2 ,j=1..PZ-1     (26) 

 
As far as next layers are concerned, weights are transformed according to Eqs. 23 – 

26 if correction is carried out from the end of the network to its beginning [2, 3]. 
After correction completion, another spectrum Q with a density parameter is put 

into the input the network to start learning. The network is calculated forward and the 
results are compared with target values of the vector  specified by the spectrum Q. 
Then, learning is carried out in the opposite way. There can be as many learning iterates 
as possible (about 5·106). It stands to reason that only a computer can calculate the 

jВy
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above. The higher capacity computers have, the greater interest to artificial neural 
networks is aroused in different spheres of physics. 
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